References
[1]
Armstrong GL, MacCannell DR, Taylor J, Carleton HA, Neuhaus EB, Bradbury RS, et al. Pathogen genomics in public health. New England Journal of Medicine. 2019;381(26):2569-2580.
[2]
Hodcroft EB, Zuber M, Nadeau S, Vaughan TG, Crawford KH, Althaus CL, et al. Spread of a SARS-CoV-2 variant through Europe in the summer of 2020. Nature. 2021;595(7869):707-712.
[3]
Davies NG, Abbott S, Barnard RC, Jarvis CI, Kucharski AJ, Munday JD, et al. Estimated transmissibility and impact of SARS-CoV-2 lineage B. 1.1. 7 in England. Science. 2021;372(6538):eabg3055.
[4]
Volz E, Mishra S, Chand M, Barrett JC, Johnson R, Geidelberg L, et al. Assessing transmissibility of SARS-CoV-2 lineage B. 1.1. 7 in England. Nature. 2021;593(7858):266-269.
[5]
Worobey M, Gemmel M, Teuwen DE, Haselkorn T, Kunstman K, Bunce M, et al. Direct evidence of extensive diversity of HIV-1 in Kinshasa by 1960. Nature. 2008;455(7213):661-664.
[6]
Krause-Kyora B, Susat J, Key FM, Kühnert D, Bosse E, Immel A, et al. Neolithic and medieval virus genomes reveal complex evolution of hepatitis B. eLife. 2018;7:e36666.
[7]
Dudas G, Carvalho LM, Bedford T, Tatem AJ, Baele G, Faria NR, et al. Virus genomes reveal factors that spread and sustained the Ebola epidemic. Nature. 2017;544(7650):309-315.
[8]
Drake JW. Rates of spontaneous mutation among RNA viruses. Proceedings of the National Academy of Sciences. 1993;90(9):4171-4175.
[9]
Malpica JM, Fraile A, Moreno I, Obies CI, Drake JW, Garca-Arenal F. The rate and character of spontaneous mutation in an RNA virus. Genetics. 2002;162(4):1505-1511.
[10]
Holmes EC. The Evolution and Emergence of RNA Viruses. Oxford University Press; 2009.
[11]
McCrone JT, Lauring AS. Genetic bottlenecks in intraspecies virus transmission. Current Opinion in Virology. 2018;28:20-25.
[12]
Holmes EC, Dudas G, Rambaut A, Andersen KG. The evolution of Ebola virus: Insights from the 2013–2016 epidemic. Nature. 2016;538(7624):193-200.
[13]
Mate SE, Kugelman JR, Nyenswah TG, Ladner JT, Wiley MR, Cordier-Lassalle T, et al. Molecular evidence of sexual transmission of Ebola virus. New England Journal of Medicine. 2015;373(25):2448-2454.
[14]
Mbala-Kingebeni P, Pratt C, Mutafali-Ruffin M, Pauthner MG, Bile F, Nkuba-Ndaye A, et al. Ebola virus transmission initiated by relapse of systemic Ebola virus disease. New England Journal of Medicine. 2021;384(13):1240-1247.
[15]
Faria NR, Quick J, Claro IM, Theze J, Jesus JG de, Giovanetti M, et al. Establishment and cryptic transmission of Zika virus in Brazil and the Americas. Nature. 2017;546(7658):406-410.
[16]
Turakhia Y, Thornlow B, Hinrichs AS, De Maio N, Gozashti L, Lanfear R, et al. Ultrafast Sample placement on Existing tRees (UShER) enables real-time phylogenetics for the SARS-CoV-2 pandemic. Nature Genetics. 2021;53(6):809-816.
[17]
Aksamentov I, Roemer C, Hodcroft EB, Neher RA. Nextclade: Clade assignment, mutation calling and quality control for viral genomes. Journal of Open Source Software. 2021;6(67):3773.
[18]
Hadfield J, Megill C, Bell SM, Huddleston J, Potter B, Callender C, et al. Nextstrain: Real-time tracking of pathogen evolution. Bioinformatics. 2018;34(23):4121-4123.
[19]
Nguyen LT, Schmidt HA, Von Haeseler A, Minh BQ. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution. 2015;32(1):268-274.
[20]
Kozlov AM, Darriba D, Flouri T, Morel B, Stamatakis A. RAxML-NG: A fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics. 2019;35(21):4453-4455.
[21]
Price MN, Dehal PS, Arkin AP. FastTree 2–approximately maximum-likelihood trees for large alignments. PloS ONE. 2010;5(3):e9490.
[22]
Drummond AJ, Rambaut A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology. 2007;7(1):1-8.
[23]
Jackson B, Boni MF, Bull MJ, Colleran A, Colquhoun RM, Darby AC, et al. Generation and transmission of interlineage recombinants in the SARS-CoV-2 pandemic. Cell. 2021;184(20):5179-5188.
[24]
Nagarajan N, Kingsford C. GiRaF: Robust, computational identification of influenza reassortments via graph mining. Nucleic Acids Research. 2011;39(6):e34-e34.
[25]
Barrat-Charlaix P, Vaughan TG, Neher RA. Treeknit: Inferring ancestral reassortment graphs of influenza viruses. PLoS Computational Biology. 2022;18(8):e1010394.
[26]
Müller NF, Stolz U, Dudas G, Stadler T, Vaughan TG. Bayesian inference of reassortment networks reveals fitness benefits of reassortment in human influenza viruses. Proceedings of the National Academy of Sciences. 2020;117(29):17104-17111.
[27]
Bouckaert R, Heled J, Kühnert D, Vaughan T, Wu CH, Xie D, et al. BEAST 2: A software platform for Bayesian evolutionary analysis. PLoS Computational Biology. 2014;10(4):e1003537.
[28]
Duchêne S, Holt KE, Weill FX, Hello SL, Hawkey J, Edwards DJ, et al. Genome-scale rates of evolutionary change in bacteria. Microbial Genomics. 2016;2(11).
[29]
Feil EJ, Spratt BG. Recombination and the population structures of bacterial pathogens. Annual Reviews in Microbiology. 2001;55(1):561-590.
[30]
Mateo-Estrada V, Fernández-Vázquez JL, Moreno-Manjón J, Hernández-González IL, Rodríguez-Noriega E, Morfín-Otero R, et al. Accessory genomic epidemiology of cocirculating Acinetobacter baumannii clones. mSystems. 2021;6(4):e00626-21.
[31]
Seemann T. Prokka: Rapid prokaryotic genome annotation. Bioinformatics. 2014;30(14):2068-2069.
[32]
Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP, Zaslavsky L, et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Research. 2016;44(14):6614-6624.
[33]
Didelot X, Walker AS, Peto TE, Crook DW, Wilson DJ. Within-host evolution of bacterial pathogens. Nature Reviews Microbiology. 2016;14(3):150-162.
[34]
Hall MD, Holden MT, Srisomang P, Mahavanakul W, Wuthiekanun V, Limmathurotsakul D, et al. Improved characterisation of MRSA transmission using within-host bacterial sequence diversity. eLife. 2019;8:e46402.
[35]
Duval A, Opatowski L, Brisse S. Defining genomic epidemiology thresholds for common-source bacterial outbreaks: A modelling study. The Lancet Microbe. 2023;4(5):e349-e357.
[36]
Wymant C, Hall M, Ratmann O, Bonsall D, Golubchik T, Cesare M de, et al. PHYLOSCANNER: Inferring transmission from within-and between-host pathogen genetic diversity. Molecular Biology and Evolution. 2018;35(3):719-733.
[37]
Tong SY, Holden MT, Nickerson EK, Cooper BS, Köser CU, Cori A, et al. Genome sequencing defines phylogeny and spread of methicillin-resistant Staphylococcus aureus in a high transmission setting. Genome Research. 2015;25(1):111-118.
[38]
Didelot X, Kendall M, Xu Y, White PJ, McCarthy N. Genomic epidemiology analysis of infectious disease outbreaks using TransPhylo. Current Protocols. 2021;1(2):e60.
[39]
Didelot X, Fraser C, Gardy J, Colijn C. Genomic infectious disease epidemiology in partially sampled and ongoing outbreaks. Molecular Biology and Evolution. 2017;34(4):997-1007.